第二十一篇:Oxidative Stress in Atherosclerosis[1]

动脉粥样硬化中的氧化应激

DOI 10.1007/s11883-017-0678-6

Postulated mechanisms by which cardiovascular risk factors affect ROS generation and endothelial function along the interplay ofoxidant and antioxidant systems, in generation of ROS. 

假设的机制:心血管危险因素通过氧化与抗氧化系统的相互作用影响活性氧(ROS)的生成及内皮功能。

Role ofOx-LDL and LOX-1 in atherogenesis and thrombosis.

Ox-LDL和LOX-1在动脉粥样硬化形成和血栓形成中的作用


第二十二篇:Oxidative Stress and Hypertension[2]

氧化应激与高血压

DOI: 10.1161/CIRCRESAHA.121.318063

Sources of reactive oxygen species (ROS) in the cardiovascular system.

The major source of ROS in the cardiovascular system is the NOX (NADPH oxidase) family. NOX1–4 are p22phox-dependent oxidases, whereas NOX5, a Ca2+-sensitive NOX, does not require p22phox for its activation. In the cardiovascular system, NOXes are regulated by prohypertensive and inflammatory factors, including Ang II (angiotensin II), ET-1 (endothelin-1), aldosterone, salt, growth factors (VEGF [vascular endothelium growth factor] and epidermal growth factor [EGF]), and TNF (tumor necrosis factor). ROS are also generated by eNOS (endothelial nitric oxide synthase) uncoupling, and mitochondrial and endoplasmic reticulum (ER) mechanisms, which are influenced by NOX/ROS. AT1R indicates Ang II type 1 receptor; BH4, tetrahydrobiopterin; ETAR, ET-1 type A receptor; GFR, growth factor receptor; and MR, mineralocorticoid receptor.

心血管系统中活性氧(ROS)的来源:

心血管系统中ROS的主要来源是NOX(NADPH氧化酶)家族。NOX1至NOX4为依赖p22phox的氧化酶,而NOX5是一种钙敏感型NOX,其活化不依赖p22phox。在心血管系统中,NOX酶的活性受多种促高血压和炎症因子的调控,包括血管紧张素II(Ang II)、内皮素-1(ET-1)、醛固酮、盐、各种生长因子(如血管内皮生长因子VEGF和表皮生长因子EGF)以及肿瘤坏死因子(TNF)。此外,ROS还可通过内皮型一氧化氮合酶(eNOS)解偶联、线粒体以及内质网(ER)机制产生,而这些机制亦受NOX/ROS调控影响。

Interplay between oxidative stress and endoplasmic reticulum (ER) stress in hypertension.

Increased NADPH oxidase (Nox)-induced reactive oxygen species (ROS) generation promotes activation of ER stress signaling pathways and the unfolded protein response that influences vascular function in hypertension.

氧化应激与内质网(ER)应激在高血压中的相互作用:

NADPH氧化酶(Nox)诱导的活性氧(ROS)生成增加,促进内质网应激信号通路及未折叠蛋白反应(UPR)的激活,从而影响高血压中的血管功能。

Posttranslational oxidative modification of proteins.

Main reactions leading to reversible and irreversible oxidation of proteins in cardiovascular cells.

蛋白质的翻译后氧化修饰。 心血管细胞中导致蛋白质可逆性和不可逆性氧化的主要反应过程。

Schematic of redox-sensitive signaling pathways involved in hypertension.

ROS (reactive oxygen species) influence many signaling molecules that regulate cardiovascular function, including kinases, phosphatases, Ca2+ channels, transcription factors, genes. These processes involve Ox-PTM (oxidative posttranslational modifications) of downstream redox-sensitive targets. Oxidative stress causes abnormal redox signaling leading to cardiovascular dysfunction and remodeling in hypertension. Decreased antioxidants contribute to oxidative stress. MMP indicates matrix metalloproteinases; PTP, protein tyrosine phosphatases; and UPR, unfolded protein response.

高血压中参与的氧化还原敏感性信号通路示意图:

活性氧(ROS)影响多种调控心血管功能的信号分子,包括激酶、磷酸酶、钙通道(Ca²⁺通道)、转录因子及相关基因。这些过程涉及下游氧化还原敏感靶点的氧化性翻译后修饰(Ox-PTM)。氧化应激导致异常的氧化还原信号传导,从而引发高血压中的心血管功能障碍和结构重塑。抗氧化物水平的下降亦促进氧化应激的发展。

氧化应激相关综述|第 7 弹

Oxidative stress and the inflammasome in hypertension.

Prohypertensive factors induce activation of NLRP3 (nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome through ROS (reactive oxygen species). ROS influences signal 1 (cytokines, PAMPS (pathogen-associated molecular patterns, DAMPS (danger-associated molecular patterns), leading to activation of NF-κB (nuclear factor-κB) and gene expression of components of the inflammasome. ROS also influence signal 2, by PAMPS, DAMPS, oxLDL (oxidized low-density lipoprotein), oxPL (oxidized phospholipids), ATP, Ang II (angiotensin II), ET-1 (endothelin-1), aldo (aldosterone), and cations (K+, Ca2+, and Na+). These processes lead to assembly of the inflammasome complex (NLRP3, ASC [apoptosis-associated speck-like protein], and procaspase-1) and consequent activation of caspase-1, cleavage of pro-IL (interleukin)-1β and pro-IL-18, and production of active forms of IL-1β and IL-18, which increase the inflammatory response, fibrosis, and vascular remodeling in hypertension. MR indicates mineralocorticoid receptor; and question mark (?), possible effect. 

氧化应激与炎症小体在高血压中的作用:

促高血压因子通过活性氧(ROS)介导NLRP3炎症小体(即含吡啶结构域的NOD样受体家族成员3,nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3)的激活。ROS影响信号1,即细胞因子、PAMPs(病原体相关分子模式)和DAMPs(损伤相关分子模式),从而激活NF-κB(核因子-κB)并诱导炎症小体相关组分的基因表达。

ROS还通过PAMPs、DAMPs、氧化低密度脂蛋白(oxLDL)、氧化磷脂(oxPL)、ATP、血管紧张素II(Ang II)、内皮素-1(ET-1)、醛固酮(aldo)以及钾、钙、钠等阳离子(K⁺、Ca²⁺、Na⁺)影响信号2。这些过程促使炎症小体复合物的组装(包括NLRP3、ASC[凋亡相关斑点样蛋白]和前体caspase-1),进而激活caspase-1,切割前体IL-1β和前体IL-18,生成活性的IL-1β和IL-18,增强炎症反应、纤维化及高血压中的血管重塑。文中缩略词解释如下:MR为盐皮质激素受体;问号(?)表示可能的作用。

Systems biology, oxidative stress, and hypertension.

Functional effects of oxidative stress in regulatory systems and organs in the pathophysiology of hypertension.

系统生物学、氧化应激与高血压 氧化应激在高血压病理生理过程中对调控系统和器官的功能性影响。


第二十二篇:Oxidative stress and regulated cell death in Parkinson’s disease[3]

帕金森病中的氧化应激和调节性细胞死亡

https:///10.1016/j.arr.2021.101263

Schematics of MPTP metabolism in vivo.

Due to its lipophilic nature, MPTP can cross the blood-brain barrier after systemic administration. When in the brain, MPTP is metabolized to MPDP+ by MAOB, mainly in astrocytes. Then, MPDP+ diffuses to the intracellular space and is converted by auto-oxidation to the active metabolite MPP+, which concentrates in dopaminergic neurons due to its high affinity for the plasma membrane DATs. Within the neuron, MPP+ can concentrate inside mitochondria, where it inhibits complex I of the electron transport chain, therefore disrupting the electron flux, which leads to decreased ATP synthesis and increased ROS production, especially superoxide. 

MPTP在体内代谢的示意图。

由于其亲脂性,MPTP在系统给药后能够穿过血脑屏障。进入脑组织后,MPTP主要在星形胶质细胞中被单胺氧化酶B(MAOB)代谢为MPDP⁺(1-甲基-4-苯基-2,3-二氢吡啶鎓)。随后,MPDP⁺扩散至细胞内空间,并通过自发氧化反应转化为活性代谢产物MPP⁺(1-甲基-4-苯基吡啶鎓)。由于MPP⁺对多巴胺转运体(DATs)具有高度亲和力,因此其在多巴胺能神经元中高度聚集。在神经元内,MPP⁺进一步富集于线粒体中,在此抑制电子传递链的复合物I,导致电子流受阻,进而引发ATP合成减少和活性氧(ROS)生成增加,尤其是超氧阴离子(superoxide)。

Mechanisms involved in oxidative stress susceptibility of dopaminergic neurons during PD. Dopamine metabolism is a highly oxidative mechanism.

详见:

《帕金森病(PD)中多巴胺能神经元对氧化应激易感性的机制》

Intrinsic and extrinsic apoptotic signaling pathways.

详见:《内源性与外源性细胞凋亡信号通路》

TNF-driven necroptosis.

详见:《TNF驱动的程序性坏死机制

Molecular mechanisms of ferroptosis.

详见:《铁死亡的分子机制》

Molecular mechanisms of parthanatos.

详见:《Parthanatos的分子机制》


参考文献:

[1] A. J. Kattoor, N. V. K. Pothineni, D.  Palagiri, and J. L. Mehta, “Oxidative Stress in Atherosclerosis,” Nov. 01,  2017, Current Medicine Group LLC 1. doi: 10.1007/s11883-017-0678-6.

[2] K.  K. Griendling, L. L. Camargo, F. J. Rios, R. Alves-Lopes, A. C. Montezano, and  R. M. Touyz, “Oxidative Stress and Hypertension,” Apr. 02, 2021, Lippincott  Williams and Wilkins. doi: 10.1161/CIRCRESAHA.121.318063.

[3] P.  A. Dionísio, J. D. Amaral, and C. M. P. Rodrigues, “Oxidative stress and  regulated cell death in Parkinson ’ s disease,” Ageing Res Rev, vol.  67, no. January, p. 101263, 2021, doi: 10.1016/j.arr.2021.101263.