在构建示例数据的时候,突然有了一个想法,把好的数据直接构建为一个公共数据图谱,不是为一种’功德’的做法。这里演示的数据是人类子宫内膜单细胞图谱,弥补当年读书时没有太注重意识到这个技术、且经费有限造成的遗憾。数据来源于2025年nature communications发表的文章,Cao, D., Liu, Y., Cheng, Y. et al. Time-series single-cell transcriptomic profiling of luteal-phase endometrium uncovers dynamic characteristics and its dysregulation in recurrent implantation failures. Nat Commun 16, 137 (2025). https:///10.1038/s41467-024-55419-z,由香港大学-深圳医院团队完成。数据集在GEO数据库公开,GSE-number:GSE250130。
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 7331 ## Number of edges: 252397 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9116 ## Number of communities: 16 ## Elapsed time: 1 seconds
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric ## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation' ## This message will be shown once per session
## 22:15:49 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:15:49 Read 7331 rows and found 30 numeric columns
## 22:15:49 Using Annoy for neighbor search, n_neighbors = 30
## 22:15:49 Building Annoy index with metric = cosine, n_trees = 50
## **************************************************| ## 22:15:51 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe6c358b2d ## 22:15:51 Searching Annoy index using 1 thread, search_k = 3000 ## 22:15:53 Annoy recall = 100% ## 22:15:54 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:15:55 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:15:56 Commencing optimization for 500 epochs, with 296670 positive edges ## 22:16:09 Optimization finished
## [1] "LH11_2"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 10852 ## Number of edges: 424944 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9221 ## Number of communities: 14 ## Elapsed time: 3 seconds
## 22:17:33 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:17:33 Read 10852 rows and found 30 numeric columns ## 22:17:33 Using Annoy for neighbor search, n_neighbors = 30 ## 22:17:33 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:17:36 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe3b9ebccf ## 22:17:36 Searching Annoy index using 1 thread, search_k = 3000 ## 22:17:41 Annoy recall = 100% ## 22:17:41 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:17:43 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:17:45 Commencing optimization for 200 epochs, with 478136 positive edges ## 22:17:53 Optimization finished
## [1] "LH11_3"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 10631 ## Number of edges: 368712 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9374 ## Number of communities: 22 ## Elapsed time: 2 seconds
## 22:19:12 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:19:12 Read 10631 rows and found 30 numeric columns ## 22:19:12 Using Annoy for neighbor search, n_neighbors = 30 ## 22:19:12 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:19:15 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe5b19f2c1 ## 22:19:15 Searching Annoy index using 1 thread, search_k = 3000 ## 22:19:19 Annoy recall = 100% ## 22:19:19 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:19:21 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:19:22 Commencing optimization for 200 epochs, with 441974 positive edges ## 22:19:30 Optimization finished
## [1] "LH3_1"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 10743 ## Number of edges: 364306 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9057 ## Number of communities: 18 ## Elapsed time: 3 seconds
## 22:21:09 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:21:09 Read 10743 rows and found 30 numeric columns ## 22:21:09 Using Annoy for neighbor search, n_neighbors = 30 ## 22:21:09 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:21:12 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe9cdf4f ## 22:21:12 Searching Annoy index using 1 thread, search_k = 3000 ## 22:21:17 Annoy recall = 100% ## 22:21:17 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:21:19 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:21:20 Commencing optimization for 200 epochs, with 435826 positive edges ## 22:21:27 Optimization finished
## [1] "LH3_2"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 8691 ## Number of edges: 285079 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.8465 ## Number of communities: 11 ## Elapsed time: 2 seconds
## 22:22:51 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:22:51 Read 8691 rows and found 30 numeric columns ## 22:22:51 Using Annoy for neighbor search, n_neighbors = 30 ## 22:22:51 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:22:53 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe493da909 ## 22:22:53 Searching Annoy index using 1 thread, search_k = 3000 ## 22:22:57 Annoy recall = 100% ## 22:22:57 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:22:58 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:22:59 Commencing optimization for 500 epochs, with 360818 positive edges ## 22:23:13 Optimization finished
## [1] "LH3_3"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 7020 ## Number of edges: 241685 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9308 ## Number of communities: 20 ## Elapsed time: 1 seconds
## 22:24:12 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:24:12 Read 7020 rows and found 30 numeric columns ## 22:24:12 Using Annoy for neighbor search, n_neighbors = 30 ## 22:24:12 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:24:14 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe5160167d ## 22:24:14 Searching Annoy index using 1 thread, search_k = 3000 ## 22:24:16 Annoy recall = 100% ## 22:24:17 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:24:18 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:24:19 Commencing optimization for 500 epochs, with 285654 positive edges ## 22:24:31 Optimization finished
## [1] "LH5_1"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 6713 ## Number of edges: 247428 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.8882 ## Number of communities: 16 ## Elapsed time: 1 seconds
## 22:25:16 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:25:16 Read 6713 rows and found 30 numeric columns ## 22:25:16 Using Annoy for neighbor search, n_neighbors = 30 ## 22:25:16 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:25:18 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe5dc9d450 ## 22:25:18 Searching Annoy index using 1 thread, search_k = 3000 ## 22:25:21 Annoy recall = 100% ## 22:25:21 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:25:22 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:25:23 Commencing optimization for 500 epochs, with 284998 positive edges ## 22:25:35 Optimization finished
## [1] "LH5_2"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 7935 ## Number of edges: 298181 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.8195 ## Number of communities: 13 ## Elapsed time: 2 seconds
## 22:26:30 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:26:30 Read 7935 rows and found 30 numeric columns ## 22:26:30 Using Annoy for neighbor search, n_neighbors = 30 ## 22:26:30 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:26:32 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe383c98bd ## 22:26:32 Searching Annoy index using 1 thread, search_k = 3000 ## 22:26:35 Annoy recall = 100% ## 22:26:35 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:26:36 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:26:37 Commencing optimization for 500 epochs, with 334126 positive edges ## 22:26:50 Optimization finished
## [1] "LH5_3"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 6437 ## Number of edges: 233939 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.8992 ## Number of communities: 16 ## Elapsed time: 1 seconds
## 22:27:35 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:27:35 Read 6437 rows and found 30 numeric columns ## 22:27:35 Using Annoy for neighbor search, n_neighbors = 30 ## 22:27:35 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:27:37 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe21d9082f ## 22:27:37 Searching Annoy index using 1 thread, search_k = 3000 ## 22:27:39 Annoy recall = 100% ## 22:27:40 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:27:41 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:27:42 Commencing optimization for 500 epochs, with 268708 positive edges ## 22:27:53 Optimization finished
## [1] "LH7_1"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 10070 ## Number of edges: 324999 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.8503 ## Number of communities: 12 ## Elapsed time: 2 seconds
## 22:29:21 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:29:21 Read 10070 rows and found 30 numeric columns ## 22:29:21 Using Annoy for neighbor search, n_neighbors = 30 ## 22:29:21 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:29:23 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe75675d9 ## 22:29:23 Searching Annoy index using 1 thread, search_k = 3000 ## 22:29:27 Annoy recall = 100% ## 22:29:28 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:29:29 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:29:30 Commencing optimization for 200 epochs, with 406614 positive edges ## 22:29:37 Optimization finished
## [1] "LH7_2"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 9730 ## Number of edges: 344065 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9035 ## Number of communities: 16 ## Elapsed time: 3 seconds
## 22:30:49 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:30:49 Read 9730 rows and found 30 numeric columns ## 22:30:49 Using Annoy for neighbor search, n_neighbors = 30 ## 22:30:49 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:30:52 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe5c21e64 ## 22:30:52 Searching Annoy index using 1 thread, search_k = 3000 ## 22:30:56 Annoy recall = 100% ## 22:30:56 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:30:58 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:30:59 Commencing optimization for 500 epochs, with 420648 positive edges ## 22:31:15 Optimization finished
## [1] "LH7_3"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 8558 ## Number of edges: 314480 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9244 ## Number of communities: 21 ## Elapsed time: 1 seconds
## 22:32:24 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:32:24 Read 8558 rows and found 30 numeric columns ## 22:32:24 Using Annoy for neighbor search, n_neighbors = 30 ## 22:32:24 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:32:26 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe5183a39f ## 22:32:26 Searching Annoy index using 1 thread, search_k = 3000 ## 22:32:29 Annoy recall = 100% ## 22:32:29 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:32:30 Found 2 connected components, falling back to 'spca' initialization with init_sdev = 1 ## 22:32:30 Using 'irlba' for PCA ## 22:32:30 PCA: 2 components explained 42.86% variance ## 22:32:30 Scaling init to sdev = 1 ## 22:32:31 Commencing optimization for 500 epochs, with 362708 positive edges ## 22:32:45 Optimization finished
## [1] "LH9_1"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 7331 ## Number of edges: 257585 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9130 ## Number of communities: 17 ## Elapsed time: 1 seconds
## 22:33:45 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:33:45 Read 7331 rows and found 30 numeric columns ## 22:33:45 Using Annoy for neighbor search, n_neighbors = 30 ## 22:33:45 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:33:46 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe10730ae9 ## 22:33:46 Searching Annoy index using 1 thread, search_k = 3000 ## 22:33:49 Annoy recall = 100% ## 22:33:50 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:33:51 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:33:53 Commencing optimization for 500 epochs, with 299704 positive edges ## 22:34:05 Optimization finished
## [1] "LH9_2"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 7727 ## Number of edges: 256640 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9164 ## Number of communities: 19 ## Elapsed time: 1 seconds
## 22:35:00 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:35:00 Read 7727 rows and found 30 numeric columns ## 22:35:00 Using Annoy for neighbor search, n_neighbors = 30 ## 22:35:00 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:35:02 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe73ed0e2a ## 22:35:02 Searching Annoy index using 1 thread, search_k = 3000 ## 22:35:04 Annoy recall = 100% ## 22:35:05 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:35:06 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:35:08 Commencing optimization for 500 epochs, with 307292 positive edges ## 22:35:20 Optimization finished
## [1] "LH9_3"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 6976 ## Number of edges: 233344 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9326 ## Number of communities: 20 ## Elapsed time: 1 seconds
## 22:36:09 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:36:09 Read 6976 rows and found 30 numeric columns ## 22:36:09 Using Annoy for neighbor search, n_neighbors = 30 ## 22:36:09 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:36:11 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe2b0f537d ## 22:36:11 Searching Annoy index using 1 thread, search_k = 3000 ## 22:36:13 Annoy recall = 100% ## 22:36:14 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:36:15 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:36:16 Commencing optimization for 500 epochs, with 282140 positive edges ## 22:36:27 Optimization finished
## [1] "RIF1"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 22262 ## Number of edges: 769073 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9033 ## Number of communities: 20 ## Elapsed time: 11 seconds
## 22:38:55 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:38:55 Read 22262 rows and found 30 numeric columns ## 22:38:55 Using Annoy for neighbor search, n_neighbors = 30 ## 22:38:55 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:39:01 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe1484e8ba ## 22:39:01 Searching Annoy index using 1 thread, search_k = 3000 ## 22:39:12 Annoy recall = 100% ## 22:39:12 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:39:14 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:39:15 Commencing optimization for 200 epochs, with 959050 positive edges ## 22:39:30 Optimization finished
## [1] "RIF10"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 7406 ## Number of edges: 271672 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9367 ## Number of communities: 19 ## Elapsed time: 1 seconds
## 22:40:15 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:40:15 Read 7406 rows and found 30 numeric columns ## 22:40:15 Using Annoy for neighbor search, n_neighbors = 30 ## 22:40:15 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:40:17 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe11071bcd ## 22:40:17 Searching Annoy index using 1 thread, search_k = 3000 ## 22:40:20 Annoy recall = 100% ## 22:40:20 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:40:21 Found 2 connected components, falling back to 'spca' initialization with init_sdev = 1 ## 22:40:21 Using 'irlba' for PCA ## 22:40:22 PCA: 2 components explained 52.4% variance ## 22:40:22 Scaling init to sdev = 1 ## 22:40:22 Commencing optimization for 500 epochs, with 312088 positive edges ## 22:40:34 Optimization finished
## [1] "RIF2"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 8540 ## Number of edges: 290816 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.8767 ## Number of communities: 14 ## Elapsed time: 2 seconds
## 22:41:40 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:41:40 Read 8540 rows and found 30 numeric columns ## 22:41:40 Using Annoy for neighbor search, n_neighbors = 30 ## 22:41:40 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:41:43 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe569248d7 ## 22:41:43 Searching Annoy index using 1 thread, search_k = 3000 ## 22:41:46 Annoy recall = 100% ## 22:41:46 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:41:48 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:41:48 Commencing optimization for 500 epochs, with 348870 positive edges ## 22:42:02 Optimization finished
## [1] "RIF3"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 9510 ## Number of edges: 328576 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9243 ## Number of communities: 20 ## Elapsed time: 2 seconds
## 22:43:05 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:43:05 Read 9510 rows and found 30 numeric columns ## 22:43:05 Using Annoy for neighbor search, n_neighbors = 30 ## 22:43:05 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:43:07 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefeef018ba ## 22:43:07 Searching Annoy index using 1 thread, search_k = 3000 ## 22:43:11 Annoy recall = 100% ## 22:43:12 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:43:13 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:43:15 Commencing optimization for 500 epochs, with 393382 positive edges ## 22:43:31 Optimization finished
## [1] "RIF4"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 11375 ## Number of edges: 397213 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9029 ## Number of communities: 17 ## Elapsed time: 3 seconds
## 22:44:51 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:44:51 Read 11375 rows and found 30 numeric columns ## 22:44:51 Using Annoy for neighbor search, n_neighbors = 30 ## 22:44:51 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:44:54 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefefd96ed2 ## 22:44:54 Searching Annoy index using 1 thread, search_k = 3000 ## 22:44:58 Annoy recall = 100% ## 22:44:59 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:45:00 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:45:02 Commencing optimization for 200 epochs, with 466050 positive edges ## 22:45:09 Optimization finished
## [1] "RIF5"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 9081 ## Number of edges: 304377 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9361 ## Number of communities: 19 ## Elapsed time: 1 seconds
## 22:46:18 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:46:18 Read 9081 rows and found 30 numeric columns ## 22:46:18 Using Annoy for neighbor search, n_neighbors = 30 ## 22:46:18 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:46:21 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe45fbbba5 ## 22:46:21 Searching Annoy index using 1 thread, search_k = 3000 ## 22:46:24 Annoy recall = 100% ## 22:46:25 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:46:26 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:46:27 Commencing optimization for 500 epochs, with 374320 positive edges ## 22:46:42 Optimization finished
## [1] "RIF6"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 21163 ## Number of edges: 746019 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.8614 ## Number of communities: 15 ## Elapsed time: 11 seconds
## 22:49:02 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:49:02 Read 21163 rows and found 30 numeric columns ## 22:49:02 Using Annoy for neighbor search, n_neighbors = 30 ## 22:49:02 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:49:07 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe64331abe ## 22:49:07 Searching Annoy index using 1 thread, search_k = 3000 ## 22:49:15 Annoy recall = 100% ## 22:49:16 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:49:18 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:49:20 Commencing optimization for 200 epochs, with 914458 positive edges ## 22:49:35 Optimization finished
## [1] "RIF7"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 8515 ## Number of edges: 290692 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9016 ## Number of communities: 16 ## Elapsed time: 2 seconds
## 22:50:38 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:50:38 Read 8515 rows and found 30 numeric columns ## 22:50:38 Using Annoy for neighbor search, n_neighbors = 30 ## 22:50:38 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:50:40 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe73191fce ## 22:50:40 Searching Annoy index using 1 thread, search_k = 3000 ## 22:50:43 Annoy recall = 100% ## 22:50:44 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:50:46 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:50:47 Commencing optimization for 500 epochs, with 349838 positive edges ## 22:51:01 Optimization finished
## [1] "RIF8"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 6715 ## Number of edges: 232670 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.8858 ## Number of communities: 14 ## Elapsed time: 1 seconds
## 22:51:52 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:51:52 Read 6715 rows and found 30 numeric columns ## 22:51:52 Using Annoy for neighbor search, n_neighbors = 30 ## 22:51:52 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:51:53 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe633b2d9e ## 22:51:53 Searching Annoy index using 1 thread, search_k = 3000 ## 22:51:56 Annoy recall = 100% ## 22:51:56 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:51:58 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:51:58 Commencing optimization for 500 epochs, with 277944 positive edges ## 22:52:09 Optimization finished
## [1] "RIF9"
## Normalizing layer: counts ## Finding variable features for layer counts ## Centering and scaling data matrix ## Computing nearest neighbor graph ## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck ## ## Number of nodes: 7278 ## Number of edges: 266568 ## ## Running Louvain algorithm... ## Maximum modularity in 10 random starts: 0.9239 ## Number of communities: 20 ## Elapsed time: 1 seconds
## 22:53:06 UMAP embedding parameters a = 0.9922 b = 1.112 ## 22:53:06 Read 7278 rows and found 30 numeric columns ## 22:53:06 Using Annoy for neighbor search, n_neighbors = 30 ## 22:53:06 Building Annoy index with metric = cosine, n_trees = 50 ## 0% 10 20 30 40 50 60 70 80 90 100% ## [----|----|----|----|----|----|----|----|----|----| ## **************************************************| ## 22:53:08 Writing NN index file to temp file /tmp/RtmpmI4BPa/file3aefe69dbba4 ## 22:53:08 Searching Annoy index using 1 thread, search_k = 3000 ## 22:53:11 Annoy recall = 100% ## 22:53:12 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 ## 22:53:13 Initializing from normalized Laplacian + noise (using RSpectra) ## 22:53:15 Commencing optimization for 500 epochs, with 307572 positive edges ## 22:53:28 Optimization finished
## Spam version 2.10-0 (2023-10-23) is loaded. ## Type 'help( Spam)' or 'demo( spam)' for a short introduction ## and overview of this package. ## Help for individual functions is also obtained by adding the ## suffix '.spam' to the function name, e.g. 'help( chol.spam)'.
## ## Attaching package: 'spam'
## The following objects are masked from 'package:base': ## ## backsolve, forwardsolve