文献摘要
研究目的 有研究者提出了一种简单的基于肝脏硬度(LSM)、受控衰减参数(CAP)和血清天冬氨酸氨基转移酶(AST)综合评分方法,即FibroScan-AST(FAST评分),用于无创识别纤维化性非酒精性脂肪性肝炎(NASH)患者。在本研究中,我们对已发表的研究进行了系统回顾和荟萃分析,以评价FAST评分在识别纤维化非酒精性脂肪性肝炎患者方面的总体诊断准确性。
研究设计 我们在Pubmed、Ovid Embase、Scopus和Cochrane Library电子数据库中系统检索了2020年 2月3日至2022年4月30日期间以任何语言发表的包含全文的文献。我们的研究纳入了FAST评分用于识别纤维化NASH成人患者的排除(≤0.35)和诊断(≥0.67)界值的敏感性和特异性数据的原创文章。
研究结果 纳入了12项观察性研究,共有5835例肝活检证实的NAFLD患者。纤维化NASH的集合患病率为28%(95% CI为21%至34%)。FAST评分排除/诊断界值的集合敏感性为89%(95% CI 82%至93%),集合特异性为89%(95% CI 83%至94%)。FAST评分的阴性预测值和阳性预测值分别为92%(95% CI 91%至95%)和65%(95% CI 53%至68%)。亚组分析和影响偏倚分析并未改变这些结果。
研究结论 我们的荟萃分析结果表明,FAST评分在纤维化NASH的无创诊断中表现良好。因此,该评分可用于有效识别应转诊通过肝活检进行确诊和/或考虑使用新兴药物疗法治疗的患者。
文献解读
表1. 纳入的12项研究的主要特点
(点击图片可放大)
研究筛选
图1. 研究筛选流程图
(点击图片可放大)
FAST评分诊断效能
-
用于排除(Rule out)纤维化NASH的FAST评分界值(≤0.35)的集合敏感性为89%(95% CI 82% -93%)、集合特异性为56% (95% CI 43%-67%),阴性似然比(Negative Likelihood Ratios, NLR)为0.2(0.15-0.27)、阳性似然比(Positive Likelihood Ratios, PLR)为2.0(1.6-2.4)。(图2A) -
用于诊断(Rule in)纤维化NASH的FAST评分界值(≥0.67)的集合敏感性为46%(95% CI 37% -55%)、集合特异性为89%(95% CI 83%-94%),NLR为0.61(0.54-0.68)、PLR为4.3(3.1-5.9)。(图2B)
图2A. 根据排除界值的FAST评分
用于无创识别纤维化NASH的
集合敏感性和特异性森林图
(点击图片可放大)
图2B. 根据诊断界值的FAST评分
用于无创识别纤维化NASH的
集合敏感性和特异性森林图
(点击图片可放大)
-
根据分层汇总受试者操作特征曲线(Hierarchical Summary Receiver Operating Characteristic Curve, HSROC)汇总的敏感性和特异性数据,用于排除纤维化NASH的FAST评分界值(≤0.35)的受试者操作特征曲线下面积(Area Under Receiver Operating Characteristics Curve, AUROC)为81%(95%CI 78%-85%),用于诊断纤维化NASH的FAST评分界值(≥0.67)的AUROC为73%(95%CI 69%-77%)。
图3. FAST评分用于无创识别
纤维化NASH的分层汇总
受试者操作特征曲线图
(点击图片可放大)
-
在不同的纤维化NASH患病率(Prevalence)(即验前概率[Pre-test Probability])所对应的FAST评分界值分别用于排除(≤0.35)和诊断(≥0.67)纤维化NASH的阴性预测值(Negative Predictive Value, NPV)和阳性预测值(Positive Predictive Value, PPV)数据中,当纤维化NASH的患病率为26.3%(即本研究中的纤维化NASH患病率中位数)时,FAST评分排除界值(≤0.35)的NPV为92%(95% CI 91%-95%),FAST评分诊断界值(≥0.67)的PPV为61%(95% CI 53%-68%);当纤维化NASH的患病率为30%(该患病率接近全球高风险人群中NASH的患病率10)时,FAST评分排除界值(≤0.35)的NPV为92%(95% CI 90%-94%),FAST评分诊断界值(≥0.67)的PPV为65%(95% CI 57%-72%)。(表2) -
综合所有纳入的研究数据,FAST评分的排除界值(≤0.35)的NPV范围在77%-98%,FAST评分的诊断界值(≥0.67)的PPV范围在32%-87%。(表2)
-
根据Fagan’s诺模图(Fagan’s nomogram),当纤维化NASH的患病率(即验前概率)分别为10%、20%、26.3%、30%时,通过FAST评分排除界值(≤0.35)检测出纤维化NASH阴性结果的验后概率(Post-test Probability)分别为2%、5%、7%、8%;通过FAST评分诊断界值(≥0.67)检测出纤维化NASH阳性结果的验后概率分别为32%、52%、60%、65%。(图4)
表2. 随着纤维化NASH患病率

(验前概率)升高的FAST评分
的NPV和PPV
(点击图片可放大)
图4. Fagan’s诺模图显示的
不同验前概率下FAST评分检测
的验后概率
(点击图片可放大)
研究异质性评估
显著影响FAST评分的纤维化NASH排除界值(≤0.35)诊断效能的变量包括:
-
研究设计(I2=79%[55%-100%],总体p=0.01)
-
BMI高于中位数(I2=72%[ 39%-100%],总体p=0.03)
-
LSM值高于中位数(I2=95%[91%-99%],总体p<0.001)
-
AST值高于中位数(I2=95%[92%-99%],总体p<0.001)
显著影响FAST评分的纤维化NASH诊断界值(≥0.67)诊断效能的变量包括:
-
研究设计(I2=79%[54%-100%],总体p=0.01)
-
BMI高于中位数(I2=76%[47%-100%],总体p=0.02)
-
糖尿病患病率高于中位数(I2=96%[93%-99%],总体p<0.001)
-
LSM值高于中位数(I2=95%[91%-99%],总体p<0.001)
-
CAP值高于中位数(I2=97%[96%-99%],总体p<0.001)
-
AST值高于中位数(I2=95%[91%-99%],总体p<0.001)
表3. FAST评分诊断效能的亚组分析
(点击图片可放大)
图5. 库克距离图评估的潜在研究偏倚
(点击图片可放大)
Ravaioli, Federico et al. “Diagnostic accuracy of FibroScan-AST (FAST) score for the non-invasive identification of patients with fibrotic non-alcoholic steatohepatitis: a systematic review and meta-analysis.” Gut vol. 72,7 (2023): 1399-1409. doi:10.1136/gutjnl-2022-328689
参考文献
1. Systematic review and meta-analysis.” Hepatology (Baltimore, Md.) vol. 65,5 (2017): 1557-15651.Mantovani, Alessandro et al. “Complications, morbidity and mortality of nonalcoholic fatty liver disease.” Metabolism: clinical and experimental vol. 111S (2020): 154170
2. Dulai, Parambir S et al. “Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis.” Hepatology (Baltimore, Md.) vol. 65,5 (2017): 1557-1565
3. Nguyen, Vy H et al. “Differential Clinical Characteristics and Mortality Outcomes in Persons With NAFLD and/or MAFLD.” Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association vol. 19,10 (2021): 2172-2181.e6
4. Castera, Laurent et al. “Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease.” Gastroenterology vol. 156,5 (2019): 1264-1281.e4
5.Newsome, Philip N et al. “FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study.” The lancet. Gastroenterology & hepatology vol. 5,4 (2020): 362-373
6. Chalasani, Naga et al. “The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases.” Hepatology (Baltimore, Md.) vol. 67,1 (2018): 328-357
7. GBD 2015 Mortality and Causes of Death Collaborators. “Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015.” Lancet (London, England) vol. 388,10053 (2016): 1459-1544
8. Younossi, Zobair M et al. “AGA Clinical Practice Update on Lifestyle Modification Using Diet and Exercise to Achieve Weight Loss in the Management of Nonalcoholic Fatty Liver Disease: Expert Review.” Gastroenterology vol. 160,3 (2021): 912-918
9. Ferguson, Daniel, and Brian N Finck. “Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus.” Nature reviews. Endocrinology vol. 17,8 (2021): 484-495
10. Younossi, Zobair M et al. “Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.” Hepatology (Baltimore, Md.) vol. 64,1 (2016): 73-84