今天学习一篇于2025年10月10号发表在Oncogene杂志的文献,标题为《Comprehensive single-cell analysis reveals mast cells’ roles in cancer immunity》。文献中有一个细胞亚群在空转HE切片中的共定位分析图我比较感兴趣,来学习一下吧~
Finding transfer anchors... Using 2000 features for integration... Running CCA Merging objects 错误于validObject(object = value): 类别为“VisiumV1”的对象无效: slots in class definition but not in object: "misc" 此外: 警告信息: Command ScaleData.RNA changing from SeuratCommand to SeuratCommand 收捲时出错: 没有名称为"misc"的插槽对于此对象类 "VisiumV1" Error: no more error handlers available (recursive errors?); invoking 'abort' restart
Finding transfer anchors... Using 2000 features for integration... Running CCA Merging objects Finding neighborhoods Finding anchors Found 3730 anchors Data transfering... Finding integration vectors Finding integration vector weights 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Transfering 2000 features onto reference data Creating new Seurat object... 警告: Data is of class data.frame. Coercing to dgCMatrix. 错误于CellTrek::traint(st_data = brain_st_cortex, sc_data = brain_sc, : 没有名称为"counts"的插槽对于此对象类 "Assay5" 此外: 警告信息: 1: Command ScaleData.RNA changing from SeuratCommand to SeuratCommand 2: Adding image data that isn't associated with any assays 3: The `slot` argument of `GetAssayData()` is deprecated as of SeuratObject 5.0.0. ℹ Please use the `layer` argument instead. ℹ The deprecated feature was likely used in the CellTrek package. Please report the issue to the authors. This warning is displayed once every 8 hours. Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
## We can check the co-embedding result to see if there is overlap between these two data modalities DimPlot(brain_traint, group.by = "type")
# After coembedding, we can chart single cells to their spatial locations. # Here, we use the non-linear interpolation (intp = T, intp_lin=F) approach to augment the ST spots. brain_celltrek <- celltrek(st_sc_int=brain_traint, int_assay='traint', sc_data=brain_sc, sc_assay = 'RNA', reduction='pca', intp=T, intp_pnt=5000, intp_lin=F, nPCs=30, ntree=1000, dist_thresh=0.55, top_spot=5, spot_n=5, repel_r=20, repel_iter=20, keep_model=T)$celltrek