苄醚是一种非常稳定的醇类保护基【苄基保护羟基及脱保护方法】,一般不受其他保护基的脱保护影响,是非常重要的保护羟基的方法。脂肪醇传统Williamson醚合成需强碱条件,酚羟基的苄基醚保护一般只要用碳酸钾在乙腈或丙酮中回流即可。另外还有一些非碱性条件的苄醚化条件,如三氯乙酰亚胺酯苄酯(BTCAI)(这个试剂小编试过效果不错)2-苄氧基-1-甲基吡啶鎓三氟甲磺酸盐Dudley reagent)。然而,BTCAI的操作性不尽人意,因为它是一种对湿度和热敏感的液体。尽管Dudley试剂足够稳定,可在空气中使用,但其反应需要较高温度(83−120 °C)才能进行。
2016年,Hikaru Fujita等人开发了一种基于三嗪二酮骨架的稳定固态试剂——N,N’-二甲基化6-(苄氧基)-1,3,5-三嗪-2,4(1H,3H)-二酮(DMBOT),用于酸催化O-苄基化反应。引入N,N’-二甲基的设计理念旨在固定核心三嗪二酮骨架。DMBOT的副产物可通过简单洗涤去除。多种酸/碱敏感性醇类在酸催化剂存在下均可被DMBOT高效苄基化。其中,温和、稳定且非吸湿性的酸催化剂——2,6-二叔丁基吡啶鎓三氟甲磺酸盐——与DMBOT兼容性良好。相较于已有方法,DMBOT在非碱性条件下的挑战性O-苄基化反应中表现更优。【Eur. J. Org. Chem. 10.1002/ejoc.201601387

DMBOT的合成
MonoBOT在弱酸催化下易转化为低活性DiBOT(副反应路径)。引入N,N’-二甲基阻断酸性质子,稳定高活性骨架。两步法合成(产率72-90%),为稳定晶体,空气中易操作。溶解性显著优于MonoBOT,拓宽了反应溶剂选择。

反应条件优化
DMBOT在低酸量(1-20 mol% TfOH)、室温/60°C下高效苄基化1a(收率86-97%)。新型酸催化剂 6(2,6-二叔丁基吡啶鎓三氟甲磺酸盐)效果优异(97%收率),具非吸湿性、固态、温和酸性优势。

底物普适性
伯醇(2b-e)、仲醇(2f-g)、叔醇(2h-i)均获高收率(83-96%)。催化剂6对酸敏感底物(如2i)效果更佳(收率83%→89%)。
挑战性底物对比:DMBOT在酸/碱敏感底物(如乳酸酯1j、柠檬酸酯1k、三甲基硅乙基醇1l、炔丙基叔醇1m/n)中显著优于BTCAI和Dudley试剂,明显提高收率(如2k:5%→55%)。

【EJOC】酸性条件下制备苄醚,伯仲叔醇都适用!
实验操作
DMBOT合成

Synthesis from cyanuric chloride: To a solution of cyanuric chloride (368.8mg, 2.00 mmol) and benzyl alcohol (0.31 mL, 3.0 mmol) in CH2Cl2 (4.00mL) was added ethyldiisopropylamine (359 μL, 2.06 mmol) at 0 °C. After stirred for 1 h, the mixture was allowed to warm to RT. After stirred for additional 1 h, the mixture was cooled to 0 °C. Sodium acetate (492.2 mg, 6.00 mmol), isopropyl alcohol (4.00 mL), and N-methylmorpholine (110 μL, 1.00 mmol) was added at 0 °C. The mixture was stirred for 1 h at 0 °C and for 1 h at RT. After aqueous HCl (6 M, 0.33 mL) was added at 0 °C, the mixture was concentrated under reduced pressure. The residue was washed with cold water. Cesium carbonate (1.95 g, 6.00 mmol), DMSO (4.00 mL), and methyl iodide (374 L, 6.00 mmol) was added at RT. After stirred for 40 min, the mixture was diluted with EtOAc (20 mL) and washed with water (40 mL) and brine (20 mL). The organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/acetone = 2:1) to afford DMBOT (358.0 mg, 72%) as a crystalline solid.

Synthesis from MonoBOT: To a suspension of MonoBOT (109.6 mg, 0.500 mmol) and cesium carbonate (358 mg, 1.10 mmol) in DMSO (1.00 mL) was added methyl iodide (68.5 L, 1.10 mmol) at RT. After stirred for 40 min, the reaction mixture was diluted with EtOAc (10 mL) and washed with water (30 mL × 2) and brine (30 mL). The organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 1:1) to afford DMBOT (111.2 mg, 90%) as a crystalline solid

Benzyl 3-phenylpropyl ether (2a): To a mixture of 1a (54.5 L, 0.400 mmol), DMBOT (118.7 mg, 0.480 mmol), and MS5A (6.7 mg) in 1,4-dioxane (1.33 mL) was added TfOH (3.5 L, 0.040 mmol) at RT. After stirred for 4 h, the reaction mixture was quenched with pyridine (32.0  μL), diluted with EtOAc (20 mL), and filtered to remove MS5A. The filtrate was washed with 1% (w/w) aqueous K2CO3 (10 mL) and brine (10 mL), dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 9:1) followed by recycling preparative HPLC to afford 2a (81.0 mg, 90%) as a clear colorless oil.

Benzyl 2-(trimethylsilyl)ethyl ether (2l): To a mixture of 1l (36.7 μL, 0.300 mmol), DMBOT (148.4 mg, 0.600 mmol), and MS5A (5.0 mg) in 1,4-dioxane (1.00 mL, 0.3 M) was added 6 (10.2 mg, 0.030 mmol) at RT. After stirred for 12 h, the reaction mixture was quenched with NEt3 (6.3 μL), diluted with EtOAc (5 mL) and filtered to remove MS5A. The filtrate was washed with 1% (w/w) aqueous K2CO3 (5 mL) and brine (5 mL), dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by preparative TLC (hexane/acetone = 40:1) to afford 2l (45.8 mg,73%) as a clear colorless oil.


本研究基于”N,N’-二甲基固定三嗪二酮骨架”的策略设计并合成了DMBOT。固定化骨架赋予DMBOT高反应活性并抑制副产物生成。多种含酸/碱敏感官能团的醇类可在TfOH催化下实现高效O-苄基化。此外,易于操作的有机盐催化剂 6(酸性弱于TfOH)同样有效。在挑战性O-苄基化反应中,DMBOT的表现优于BTCAI和Dudley试剂。其优异的物理性质(稳定性、溶解性)和副产物易去除性,彰显了DMBOT的实用价值。

参考资料

Eur. J. Org. Chem. 10.1002/ejoc.201601387